
 of 1 21

Explainable
systems

nkfee

 of 2 21

The value of your software system today is given by its external
functionality. Tomorrow, its value is given by how well you can
adapt it. This depends on your ability to understand the system’s
internals enough to guide its evolution.

The explainability of your systems must become an explicit focus
as though your business depends on it. Because it does.

 of 3 21

You have a legacy system. And a crisis unfolds.

Maybe, you have just failed a migration. Or, the system's
failures appear in the news. Or, you can't adjust the
system fast enough to keep up with the market. Or, you
just don't know where to start that modernization
project.

Often, in such situations, everything looks like an
insurmountable problem. That’s a sign of a lack of
accurate insight into the system.

Let’s consider a concrete case. Say you just observed that you you
badly need to scale the system. It’s a business imperative. And, as a
first step, you decided to split a larger system into smaller parts.

You look at the architecture diagram showing the top level
dependencies and decide that, from a business perspective, you’d
first like to split the ordering and the scheduling subsystems from
one another.

The plan is made. A separate team starts working on the split. Yet, six
months in, it feels like the effort is moving in circles. Nobody seems
to know whether progress is being made, or approximately how
much work is still left to do.

What can the problem be?

You do not lack the ability to
solve the problem. You lack the
ability to see the problem.

 of 4 21

The most important problem is that you do
not know what the problem is. When you
embark on a business critical project, the lack
of visibility poses unnecessary risks that you
simply do not need. You have enough
challenges already.

Visualizing the system reveals a different
picture. You see that the two subsystems
have pieces that are highly interlinked (red
and blue) among themselves and with the
rest of the system. This picture looks very
different from the manually drawn diagram
you looked at before. It becomes evident that
tackling the code in isolation is not the
appropriate path.

This picture below describes the
nature of the problem. And you
now trust the picture because
it is created specifically for
this problem. It takes the
specifics of the

frameworks used into account for identifying
all dependencies. And it emphasizes the
specific entities of interest (the red and blue
parts of the two components). If the original
diagram was someone’s view or opinion, this
picture represents reality.

Now the problem has a shape you can trust.
You do not need to work from gut instinct.
You know.

Of course, this is just one case. Making
problems tangible is a skill you want to be
available all the time. All facets of a system
can be made explainable.

 of 5 21

decisionassessment

development

When we think of software development, we often think
of the active part of creating the system. Yet, the largest
cost is spent on assessing the current state of the
system. Developers alone spend 50% or more of their
time reading code to know what to do next. These are
only the direct costs. The indirect costs can be seen in
the consequences of the made decisions.

Software assessment is the single most expensive
activity in software development. Yet, currently, it is
not addressed explicitly, and thus, it never gets
optimized. Reading is the most labor intensive
possible way to extract information from data. Given
its costs and impact, this has to change.

Assessment must be approached explicitly.

Figuring out the system
is the single most expensive
activity in development.

 of 6 21

How explanations are created
matters. They are useful only
when they relate to reality.

The internals of systems comprise technical
issues. Shouldn’t explaining these be the realm of
technical people? Why should a manager care?

Two reasons. First, it’s the largest cost. Second, all
decisions, both the technical and the business
ones, must be based on accurate information.

Put it into perspective: Your system is much larger
than humans can read in a reasonable amount of
time. A report about your system that is built
manually will be at least inaccurate, but most
likely wrong.

All decisions about your system must relate to the
reality of that system. Everyone must care about
how reliable and representative the information
is.

That’s not only a technical issue. It’s a business
one, too.

report

slides

decision

code & data

 of 7 21

facilitator

dedicated
analysis tools

decision

code & data

For software systems to remain valuable, they
have to be adapted to changes in the
environment. The evolution challenge is posed
by its internal structure. As the dependency on
software increases and the need to change it
becomes ever more critical, it is no longer
enough to treat software as a black box: the
ability to reason and decide about its internal
structure is critical, and software assessment
becomes a strategic skill.

This is relevant both when working with in-
house systems, and when working with external
providers. The assessment skill offers an infra-
red like ability to identify and react to problems
before they escalated.

It’s like data science for software. Automating
how information is gathered from the system
reduces risks and frees energy that can be used
for experimenting and acting.

Software assessment is a
strategic skill.

stakeholders

It’s like data science,
but for software.

 of 8 21

Legacy is hard enough.
Eliminate the unnecessary risks.

The core proposition revolves around
replacing manual views created
through manual inspection by views
that are generated automatically, yet
specific to the problem.

This specificity is critical. Your system
is special and so are the problems that

appear in it. You want automation that
serves that context because that is
where value is. These views are
created through specific coding that
relies on new kind of tooling through
the creation of these views becomes
too cheap to matter.

crisis

assessment

specific
coding

generated
custom views

moldable
tools

rigid
tools

manual
views

manual
inspection

genesis custom built product (+rental) commodity

specific
problem

businessdevelopers
current practice

our proposition

evolution

Wardley Map

 of 9 21

Architecture is a
business asset.
Steering it relies
on assessment.

The ability to change the system tomorrow depends on its internal
architecture. As the ability to change is of critical importance, it follows that
the architecture becomes a business asset. And, like any business asset, you
should treat it as an investment, too.

The only architecture that matters is the one that gets reflected in code. A
key challenge is to steer the architecture while the code changes
continuously. This implies at least three things:

1. know where you are,

2. choose where you want to go,

3. ensure you go there.

Point 2 is a design problem that is often covered well. 1 and 3 are
assessment activities. Ensure you cover them well, too.

1

2

3

know where
you are

choose
where to go

ensure you go
there

 of 10 21

Explain the strategic problems
that make a difference.

decision

set
goal

confident?
no

yes

spike

get
data

compile

spikespike

Often in crises, everything looks like an
insurmountable problem. Of course,
they are not. Relying on a systematic
approach helps distill the relevant
ones.

A crisis has both technical and
business aspects and can only be

addressed effectively through a tight
collaboration between technical and
business people. That, in turn, requires
a common understanding and
agreement on goals to carry on
experiments and reach a concrete path
to action.

 of 11 21

Explain your architecture explicitly.
Steering it is a continuous investment.

The architecture that matters is the one that
is eventually reflected in code. This means
that those that affect the code are the main
architects. You do not have one architect and
many developers. There are only many
architects. This means that architecture is a
commons; a negotiation between different
perspectives.

Design the organization to facilitate this
negotiation explicitly.

Enter the daily assessment process. Anyone
can raise a concern. A facilitator crafts the
tool and the results are discussed in a

common space or standup. In this standup
only people that have data-based results can
speak. This ensure crisp conversations. And
at the end, the group distills concrete actions
that are acted upon.

This seemingly simple process, enables the
team to continuously identify, check and fix
relevant technical concerns both about
details and about broad architectural issues.
This process provides the basis for steering
long term migrations, while still

identify
concern

agree?

mold
checker

discuss
results

small
task?

solve
now

plan for
later

yes
no

yes no

 of 12 21

encode
brainstorm

evaluate

Explain your understanding of the
domain in an executable form.

The domain knowledge is too often
buried in implementation details. This
makes reasoning about the system
hard. Migrations, for example, often
fail for this reason. A domain-driven
ubiquitous language is important for
bridging the gap between business
and technology. This language is often
captured during brainstorming
sessions on whiteboards. But, that

language must not remain only on the
whiteboard.

It should be the responsibility of the
system to provide the relevant
pictures. This requires an explicit
focus, but once in place, it changes
how the business relates to the inside
of software systems and it speeds up
iterations dramatically.

 of 13 21

Explainability is not a recipe.
It is a systematic discipline
requiring dedicated skills.

Legacy means value, but value is
always specific. There are no recipes to
deal with it. It relates to your
technology, to your domain, to your
business. However, there are patterns
you can learn and skills you can build.

To steer legacy effectively, you need
custom tools that fit the problem.

Producing these tools requires
dedicated skills. That’s the job of the
facilitator. But, the most important
role is the stakeholder who should
change the processes to integrate the
new tools into the daily work.

integrated
in project teams

facilitators department

stakeholder

facilitator

craft
tools

use
tools

formulate
problem

decide

decision
custom tools

 of 14 21

Scenario: Guiding a migration

Migrations are alluring. And they are risky.

The are alluring because of the promise of the new technology.
They are risky because of the messy reality of the existing system.
Yet, the success of a migration depends on the ability to assess that
reality.

For example, in a migration case, the team manually estimated that
a part that was to be migrated was only used in a few places. To
validate this assumption, we created a custom analysis. The
visualization below reveals (in blue) that, in fact, the part was used
throughout the whole system.

Migrations are indeed risky, but the risks can be mitigated when
they are visible.

 of 15 21

Scenario: Splitting a monolithic application

A monolith grows over time. It gets more and more important. It
accumulates capabilities until it reaches a point at which, for various
reasons, it does not scale anymore. That’s when you need to split it. Yet,
doing so is hard exactly because it grew organically without clear
separations between its inner parts.

The splitting strategy must not only take into account the functional side
of the system, but its internal structure, too. As that internal structure is
usually specific to the system you need custom tools that help us think
about unwanted dependencies.

For example, to the right we
see a custom visualization
showing the services of a
system, in gray, and how
they are used by their
clients, in red. The clusters
reveal splitting options.

 of 16 21

nkfee
We make your systems explainable.

feenk.com

http://feenk.com

 of 17 21

We cover the whole legacy lifecycle.

Guiding
rewrites
Sometimes, building anew
is the only reasonable
choice. A new system
requires discovery guided
by a ubiquitous language
that bridges the technical
and business worlds. But,
that language should not
remain on a whiteboard. We
make the system explain
itself by automatically
generated views. Through
this we enable faster
feedback and iterations.

Steering
migrations
Whether you migrate to a
new technology, split the
system into smaller pieces,
or move it to the cloud, it is
the existing architecture
that poses the greatest
technical challenge. We
accompany the team
through the process of
steering the architecture in
a new direction, and we
coach the team to guide it
by means of automatic
views and constraints.

Strategic
assessment
We start by diving into your
system. This is an intense,
typically 4-8 weeks period
to learn your context and
distill a path forward. We
work closely with you and
guide the whole process
through custom tools to
explain the problem. The
result is a concrete
description of options and
recommendations.

nkfee

From figuring the path forward, to steering migrations and to guiding rewrites.

 of 18 21

Strategic
assessment

Steering
migrations

Guiding
rewrites

We identify technical problems by
interpreting the business and technical
context.

We identify and discover domain
concerns.

We assess systems and we architect
transformations and migrations.

We construct custom tools that technical
and non-technical people use to make
decisions.

We document architecture through
automated checks.

We document the business domain
through executable views.

We coach teams to incorporate our
techniques and tools to guide the
evolution of their systems.

We coach businesses to invest in
explainable systems.

nkfee

 of 19 21

We are consultants.
We are researchers.
We are authors.

We bring a unique experience. We cover the whole spectrum,
from a single line of code to decisions made at the company
executive level.

Our work is based on state-of-the-art scientific work, much of
which we personally authored. We actively create new tools
and techniques for thinking with and about software systems.

Our work has been validated for more than a decade of
working with highly difficult problems in legacy systems.

nkfee

 of 20 21

Glamorous Toolkit is
the moldable environment.

Glamorous Toolkit is our highly integrated
and moldable environment. It is a
software analysis platform. A live
notebook. A knowledge management
platform. A rich visualization engine. A
powerful query tool. A fancy editor.

But, most importantly, it can be molded
in many ways to fit the context of the
system at hand. This ability is crucial.
Through it, decision making becomes
both highly effective and a beautiful
experience.

gtoolkit.com

nkfee

http://gtoolkit.com

 of 21 21

Software is not a cost.
It’s an investment.

Black boxes are (too) risky.
Software assessment is a strategic skill.

Profitable systems are explainable.
Architecture is a business asset.

Hand-drawn pictures represent either wishes or beliefs.
Decisions should be based on facts.

Tools matter.
Pick them carefully.

Legacy is a positive thing.

Before we part …

	You do not lack the ability to solve the problem. You lack the ability to see the problem.
	Figuring out the system
	is the single most expensive activity in development.
	How explanations are created matters. They are useful only when they relate to reality.
	Software assessment is a strategic skill.
	It’s like data science, but for software.
	Legacy is hard enough.
	Eliminate the unnecessary risks.
	Architecture is a business asset.
	Steering it relies on assessment.
	Explain the strategic problems that make a difference.
	Explain your architecture explicitly. Steering it is a continuous investment.
	Explain your understanding of the domain in an executable form.
	Explainability is not a recipe.
	It is a systematic discipline requiring dedicated skills.
	Scenario: Guiding a migration
	Scenario: Splitting a monolithic application
	We cover the whole legacy lifecycle.
	We are consultants.
	We are researchers.
	We are authors.
	Glamorous Toolkit is
	the moldable environment.
	Before we part …

