Df)main
discovery

feenk

http://feenk.com

We cover the whole discovery lifecycle.

From working with domain experts to recovering knowledge from existing
systems and data and to creating executable specifications.

Visual
prototypes

We capture domain expert
input into executable
prototype. Then we make
the prototype show visual
domain representations.
Projecting multiple views
facilitates a multi faceted
discovery.

Reverse
engineering

When new systems have to
accommodate existing data
sources, like APls,
databases or file formats, or
when legacy systems
already existsin the
domain, we reverse
engineer these and
integrate the understanding
in the domain discovery.

Executable
specifications

The domain discovery is
driven by a prototype
system that is visualized in
many ways to capture the
various facets of the
domain.

Once the system exists, we
assemble the views into
larger narratives that
document the domain.
These essentially act as
executable specifications.

http://feenk.com

Visual prototypes

The domain discovery often starts
from drawings on the whiteboard.
These drawings offer a common
language between domain experts
and technical people.

Like this one right here, depicting a

flow in a restaurant.

As soon as some an idea exists, we capture it in an executable prototype.
And then we make the prototype show the same picture. For example,
here we see code on the left and an interactive domain depiction on the
right. Projecting multiple views facilitates a multi faceted discovery.

(] Glamorous Toolkit
gt 4 an UPlaceOrd...n steak (x1)) O x
+
Page B Q an UPlaceOrder (Place Order Sirloin steak (x1))

x . . .
cozyCorner := UVenue new» name:» 'Cozy Corner'. Propagation Items Consequences graph Raw Print Connections Meta
kitchen := UArea new» name:» 'Kitchen'; parentArea: » cozyCorner.
room := UArea new» name:» 'Room'; parentArea:» cozyCorner.
tablel := UArea new» name:» 'Table 1'; parentArea: » room.
table2 := UArea new» name:» 'Table 2'; parentArea:» room.
johnWaiter := UContributor new» name:» 'John Waiter'; addArea:» tablel; addArea:» table2. C C
jeffCook := UContributor new» name:» 'Jeff Cook'; addArea:» kitchen. ozy Corner
cozyCorner

> i s @ e
+ when: aMessage iskindOf: UPL

x act aMessaghandlingActor

cozyCorner
+

" when: aMessage isKindof: Us..
sirloinSteak := UConsumable new» name:» 'Sirloin steak'; price:» 27 EUR» asPrice. act: //aMessage handlingActor..
sirloinSteakMenuItem := UMenuItem new» consumable:» sirloinSteak; applicableTax:» 19 percent
» asTax.
orderByWaiter := UOrder new» addOrderItem:» (UOrderItem new» menuIltem: »
sirloinSteakMenuItem).
placeOrderByWaiter := UPlaceOrder new» order:» orderByWaiter. .

Sohnwaiter Kitchen Room
send: placeOrderByWaiter
to:» tablel.
> »i s O e
+
Jeff Cook Table 2
when: aMessage isKindOf: UPr.
act: aResult inbox: (UDeliv...
John Waiter
g when: (aMessage isKindof: UD,

act: aResultinbox: (UOrder.

$

en: (aMessage iskindOf: UR...

act: - aResult inbox: (UPrepa,

Table1

http://feenk.com

Reverse engineering of legacy
systems and data sources

Often new systems have to accommodate existing data
sources, like APls, databases or file formats. Other times,
legacy systems already exists in the domain.

We reverse engineer these and integrate the understanding
in the domain discovery.

ece Glamorous Toolkit
gt » Playground O x Q =
+ + + x
a oup (All model (127) o i Q m a FAMIXClass (org:: : :cpp:i o i m a : beg O i m
Items Navigation Properties Map Raw Connect. ®] (@] o Navigation Complete source Methods Attributes Properties Blueprint Navigation Complete source Properties Raw Connections Print Mete
public void beginClassDefinition(String oType, String
identifier) {
if (lignore()) {
Object ns = getCurrentNamespace()3
Modelerimpl
Initializers Interface implementation Accessors Attributes
= o a a Object cls = findClass(identifier, ns);

H - — —a if (cls == null) {

2 & = cls = getCoreFactory().buildClass(identifier,

g —a—= = - ns);

- >: profile.applyCppClassStereotype(cls);

7 . < a newElements.add(cls) s

o ~ a I

o / -

. /’ / - a contextStack.push(cls);

uI:" / Z '. if (CPPvariables.OT_CLASS.equals(oType)) {

o / Z -

=2 Z - contextAccessSpecifier =

o -a

getVisibilityKind().getPrivate();

B L_—.J(/ — } else +if (CPPvariables.OT_STRUCT.equals(oType)) {
=29/ / contextAccessSpecifier =
c getVisibilityKind() .getPublic()}
g” / profile.applyClassSpecifierTaggedvalue(cls,
=7 "struct");
e/ } else if (CPPvariables.OT_UNION.equals(oType)) {
H
o 3
E } else {
o, assert false
g : "Not expecting any other oType than class,
o struct and "
E + "unfon!";

}

feenk.com 40f 8

http://feenk.com

+

Executable specifications

The domain discovery is driven by a prototype system
that is visualized in many ways to capture the various
facets of the domain.

Once the system exists, we assemble the views into
larger narratives that document the domain. These
essentially act as executable specifications.

® Glamorous Toolkit

gt [YUPriceExamples O x

* svwucun - aun o e

Supporting business intelligence
Business intelligence requires data. Fine grained data. See:
- UInvoiceExamples .

- UPriceExamples *.
Compounding discounts

- UMoneyExamples ” .
Asa UMod+ifiedPrice * isnothingbya UPrice *,wecancompound discounts without extra effort.

- UQuantityExamples *.

Runtime support Uhmo > UPriceExamples
The main challenge posed to POS systems is the need to deal with the high degree of variability in the various venues. This concretePriceDiscountedByMoneyAndDiscountedByPercentage
challenge was traditionally approached as a configuration problem: the system is configured through various settings to try ngszzz”ﬁ;oumedpri ce |

to adapt to a venue. The problem with this approach is that these settings soon get to be in the hundreds, and this in turn price i= self concretePriceDiscountedByMoney v

leads to a high cost associated to testing and evolving the system.
Uhmo > UPriceExamples

concretePriceDiscountedByMoney

Uhmo offers an alternative approach: model the variability as a programming problem. The system still needs to be <gtExample>
configured but this happens through a systematic mechanism that can be maintained, tested and debugged. | price discountedPrice |

price := self concretePrice» .
See a concrete set of examples in: discountedPrice := price discountedBy: 10 EUR» .
N + and self assert:» discountedPrice = 90 EUR» asPrice.

UCozyCornerExamples >, A discountedPrice
- UCozyCornerWithCourierExamples > . v - =] > »i e #
Data analysis support discountedPrice := price discountedBy: 10 percent» .
- . self assert:» discountedPrice = 81 EUR» asPrice.
Similarly, the same model can be leveraged for data analysis purposes. . .
A discountedPrice|
V) (=)(m)()@ > i e g

See UCozyCornerWithOrdersExamples *»

. an UPriceDiscountedByPercentage
Model overview
The followig UML class diagram shows all classes from the Uhmo domain model.

an UPriceDiscountedByMoney

an Uconcreteprice

an UWorld class (UWorld) i m Q o
81.00EUR = 10% off 90.00EUR = 100.00 EUR -10.00 EUR

Uhmo Hierarchy Comment Definition Methods InstVars Examples map Example @ ® @ o

D
<
1
+
]
D
<

examples

examples

http://feenk.com

feenk

We make your systems explainable.

feenk.com

http://feenk.com

feenk

We are consultants.
We are researchers.
We are authors.

We bring a unique experience. We cover the whole spectrum,
from a single line of code to decisions made at the company
executive level.

Our work is based on state-of-the-art scientific work, much of
which we personally authored. We actively create new tools
and techniques for thinking with and about software systems.

Our work has been validated for more than a decade of
working with highly difficult problems in legacy systems.

Glamorous Toolkit is
the moldable environment.

Glamorous Toolkit is our highly integrated
and moldable environment. Itis a
software analysis platform. A live
notebook. A knowledge management
platform. A rich visualization engine. A
powerful query tool. A fancy editor.

But, most importantly, it can be molded
in many ways to fit the context of the
system at hand. This ability is crucial.
Through it, decision making becomes
both highly effective and a beautiful
experience.

feenk

glamoroustoolkit

gtoolkit.com

http://gtoolkit.com

	We cover the whole discovery lifecycle.
	Visual prototypes
	Reverse engineering of legacy systems and data sources
	Executable specifications
	We are consultants.
	We are researchers.
	We are authors.
	Glamorous Toolkit is
	the moldable environment.

