
www.humane-assessment.com

humane
assessment

on cards

http://www.humane-assessment.com
http://www.humane-assessment.com

Humane assessment is a systematic method for
making software engineering decisions. It can be
used for steering agile architecture, for managing
technical debt, for guiding migrations or for splitting
monolithic applications.

�2

humane |(h)yoōˈmān|
adjective

intended to have a civilizing or
refining effect on people

assessment |əˈsesmənt|
noun

the process of understanding a given situation to
support decision making

�3

processes

assessment

development

organization

daily

spike

strategic facilitator

tooling

craft
analysis

decision

buildup

throwaway

stakeholder

�4

context

�5

the process of understanding a situation surrounding
a software system to support decision making

what is
assessment?

Assessment is a human
activity. Its goal is to produce
enough knowledge to lead to
a decision that leads to
action. Only then it is useful.

The input is a situation that
typically involves variables
scattered across many bits of
data. Even a medium-size
software system presents
millions of such bits.

decisiondata

�6

everyone
makes decisions all the time

Managers decide about the overall
development. Architects decide the
broad technical direction.
Developers decide daily the course
of the implementation.

You might not regard these as
decisions, but they are. These
decisions are similar in that they all
require accurate information about
the state of the system. And they
happen all the time.

engineermanager

architect

�7

what’s in a decision?

What does it take to
implement this?

Is the architecture preserved
after this change?

How do I perform
this change?

�8

example

report

slides

decision

code & data

Is software assessment
important for a manager, too?

The internals of systems comprise technical
issues. So, shouldn’t assessment be the
responsibility of technical people? Why should a
manager care?

Two reasons. First, it’s the largest cost. Second,
all decisions, both the technical and the business
ones, must be based on accurate information.

Put it in perspective: Your system is much larger
than humans can read in a reasonable amount of
time. A report about your system that is built
manually will be at least inaccurate, but most
likely wrong.

All decisions about your system must relate to
the reality of that system. Everyone must care
about how reliable and representative the
information is. That’s not a technical issue. It’s a
strategic one.

decisionassessment

development

assessment provides the
basis for development

�10

Assessment aims to produce
knowledge that leads to a decision
that leads to action. When it comes to
large systems and data, it has to rely
on reverse engineering to scale. But
ultimately, it is a human activity.

Reverse engineering and software analysis
aim to create representations of the system
at a higher level of abstraction. They are
mostly a tool issue.

assessment = analysis + decision making

decisionanalyses modelsdata

assessment

reverse engineering

�11

What is the cost of migrating to a new
technology?

Can we build a new version on top of the
existing system?

What parts of the system need refactoring
most prominently?

What parts of the system depend on other
parts that should be replaced?

Does the system conform to the desired
architecture?

What causes the performance problems?

assessment questions

What does it take to split the system into
separate services?

Are all remote calls to the server error handled
on the client side?

Are all scripting properties properly initialized in
the settings?

Where is the time lost during execution: script,
code or SQL?

Or, from what parts of the system is the
persistency manager called, outside of some
dedicated components, tests, and generated
code?

example

�12

size
is the challenge

Even a medium size system contains millions
of details. You handle this size by retaining
what you think matters. You will never grasp
the complete picture in your head, even though
you might think you do. That is why data must
become part of the conversation.

�13

assessment

development

assessment is
pervasive

When we think of software development,
we think of the active part of building the
system. However, several studies show
that software engineers spend up to
50% of the time assessing the state of
the system to know what to do next.

These are the only the direct costs of
assessment. The indirect costs can be
seen in the consequences of the made
decisions.

Assessment is important and pervasive.

�14

Forward engineering receives much
attention in various forms such as
patterns and technology. While
assessment can be equally expensive, it
is currently dealt with implicitly, in an ad-
hoc way. This needs to change.

The challenge is significant because it
requires a paradigm shift. The promise
lies in the costs that can be decreased
when going from ad-hoc to structured.

The good news is that the budget is
already allocated. You are already paying
for it.

assessment

development

technology

...

?

patterns

idioms

�15

assessment
challenge

assessment is
the elephant in the room

Even though it is both
pervasive and expensive, it is
not an explicit concern.
Everyone pays for it, but
nobody really talks about it.

It’s the elephant in the
software development room.

�16

Me: Do you agree that you spend most of your
time reading code?

Developer: Hmm. Yes.

Me: Ok. When was the last time you talked about
it?

Developer: About what?

Me: About how you read code?

Developer: Talk about reading code … I don’t
remember … never?

Me: In fact, nobody really talks about it. But, don’t
you find it strange that we, as an industry, are
spending most of our budget on one single
activity about which nobody talks?

Developer: Hmm. Indeed, I never thought of it in
this way.

storya code reading
conversation

�17

development

what developers
do not

talk about

what developers
talk about

value is always
specific

shared technology

project specific

value
The main value of your project comes
from the specifics of the project, and
not from the shared infrastructure, such
as the language or the framework
used.

That is why using generic checks, such
as off-the-shelf static analyses, has a
limited impact.

Make sure that you check what is
important, and not just what is simply
easy.

�18

assessment

development

assessment is a
discipline

tailored

explicit

educated

must be

Assessment must be approached
explicitly during the development
process. It is too important to do
otherwise. Only by making it
explicit can it be optimized.

Software systems are complex and
present many contextual problems
that can only be answered with
appropriately tailored solutions.

The ability to assess a situation is
a skill. Like any skill, it needs to
and can be educated.

�19

method

�20

the method

hypothesize
existing

analysis?

craft
analysis

apply
analysis

interpret
results

confident?

For the assessment effort
to be useful, it must result
in a definite path of action.

Drive the assessment effort by
formulating and refining
hypotheses explicitly.

Custom problems require
custom solutions. To be
effective, it is critical to
craft an analyses for them.

Regardless how smart
an analysis is, it is the
human that must
interpret the results to
decide what to do
next.

no

yes

yes

no

�21

generic

automaticmanual

tailored

why
humane?

A manual analysis does not
scale because systems are
too large. A generic analysis
is not useful because the
value is in the context.

As humans, we need
automatic support, but we
need it to be tailored to the
context. This is the humane
solution.

�22

processes

�23

assessment
precedes action
Agile development replaces
upfront design with the ability to
react to new situations. But, to
make the right decision we need
to be able to assess the situation
accurately. Thus, we need to
integrate assessment deep into
the process.

Decisions are made
all the time. They
can be course
grained In between
iterations, or fine
grained on a daily
basis.

Projects typically build on top of
existing software. Thus, we first
need to understand what we are
building on.

Often, before placing a product
into production a final check
needs to ensure that certain
characteristics are met. �24

When a concern needs to
be ensured on a long term,
its assessment needs to be
integrated deep into the
development effort.
Whether large or small,
through the daily
assessment process these
concerns get captured and
distilled into immediate
actions.

daily
assessment

strategic
assessment

spike
assessment

continuous one-time

narrow

broad
When the concern is
larger in scope and the
decision requires a
thorough investigation we
need a more structured
and detailed strategic
assessment.

Some problems appear
singularly, they have a
narrow scope, and they
need to be dealt fast with.
Through spike
assessment, the assessor
uses throwaway analysis
tools to gather facts fast
and to support on the spot
decision making.

assessment in the
process

�25

code has an
emergent structure

�26

The architecture of a software system
is not a document, but the reality from
the system. It is the result of multiple
developers working at the same time
and committing code concomitantly in
different corners of the system. It is the
result of following the constraints
posed by the system’s current state. It
is the result of the social interactions
between stakeholders. It is the result
of what is possible with the underlying
languages and technologies. It is the
result of skills. It is the result of taste. It
is the result of dreams.

In short, architecture is an emergent
property created by multiple agents
interacting constantly with each other.
It cannot be fully controlled, but it can
be steered.

1

2

3

basics of
steering agile architecture

know where you are

know where you
want to go to

ensure you
go where you

want to

�27

daily
assessment

Daily assessment relies
on having the team
continuously identify,
check and fix relevant
technical concerns.

identify
concern

agree?

craft
checker

discuss
results

small
task?

solve
now

plan for
later

yes

no

yes no

�28

story

A company relied on multiple teams to develop
several software systems. The teams were
following Scrum. As the size of the projects
increased, they needed a means to control the
emerging design. We introduced the daily
assessment routine.

Each day, new concerns were raised by team
members. After the regular Scrum stand-up,
developers met in an assessment stand-up to
discuss the validity of the concerns and identify
potential improvements.

If the cost of fixing a concern was larger than 15
minutes, it got either decomposed or added to
the project backlog. If it took less than 15
minutes, it got pinned to the board and became a
task for the day. After three months, the existing
architecture got documented, and most
developers were participating actively.

daily assessment
in scrum projects

to do in progress done

story
task 1

story
task 2

concern
task A

concern
task B

story
task 4

story
task 3

�29

15 minutes

15 minutes is magical.

First, everyone has 15 minutes. Second, 15
minutes is also long enough to actually do
something with it: it is about the time it takes for a
good stand-up meeting; it is about the time it
takes to have a focused brainstorming session; it
is also about the amount of time it takes to
perform, test and commit a simple refactoring.

15 minutes is a truly magical pattern. That is why
daily assessment can benefit from it.

�30

pattern

start from an
empty report

report
Do not start from a report
containing hundreds of rules that
might or might not be relevant for
your project. Start from an empty
one and grow it as the project
evolves with only rules that you
have a need for. In this way, the
report will only provide information
that is valuable for your context.

�31

pattern

daily assessment
standup

One critical part of daily assessment is to get the whole
technical team involved in architectural decision making.
One way to implement this is through a standup that is
separate from the typical daily standup:

This standup only includes technical people to enable
highly technical discussions.

Anyone can talk, but only stakeholders that have explicit
concerns with supporting data can start the conversation.

All concerns have a default decision.

Anyone can challenge both the concern, and the decision.

A successful conversation ends with a clear decision.

If a decision is not reached within 5 minutes, the
conversation stops because it means the data is not clear.

�32

pattern

spike
assessment

focus

Spike assessment
addresses technical
problems that require
technical answers fast.

approximate
use

throwaways

It’s not spike if it’s
not short and
focused.

The main goal is to
find a satisfying
answer.

Build throwaway analysis
tools. Use them
aggressively.

explore

Ask data about the
cause. Explore.
Experiment.

�33

story

While developing an engine for browsing data,
we had a serious bug in the rendering code
that we could not track down. After several
attempts and many hours of effort, we were
able to capture the problem in a test. However,
we still did not know where the issue came
from. Due to the engine depending on deep
copying of objects, using the debugger was
close to useless.

We then approached the problem differently:
we built an interactive visualization to expose
the problem. An example can be seen to the
right. Without going into details, there should
have been no two red lines getting into the
same node from the right. As there were, we
confirmed our original suspicion. Knowing the
exact nodes that generated the problems lead
us to find the solution in a matter of minutes.
The fix was exactly one line of code.

chasing a tough bug

�34

strategic
assessment

Strategic assessment tackles problems that have a broad
scope and that are typically not formulated in technical terms.
The process focuses on involving the stakeholders, and on
refining the questions until they get answerable with hard facts.

set
goal

confident?
no

yes

spike

get
data

compile

spike
spike

�35

story

The system had a history of more than a decade of
development using multiple technologies. A set of
functionalities was reported to have performance
issues. This finding had an impact on the strategic
decision to open the system for more users.

To assess the effort required to solve the situation,
we first instrumented the runtime to produce more
detailed logs that included information about the
executed functions and the SQL statements.

These logs were parsed to recover the execution
traces. The traces were related to the static
structure so that we could locate the problematic
cases in the source code.

All analyses were integrated in a browser that
produced live reports and helped us identify
multiple problems interactively. As a result, a team
got assembled and improved the situation.

strategic assessment of
performance problems

code logs

unified
model

interactive
analyses

�36

splitting the monolith:
a multifaceted assessment
problem

One problem that requires deep understanding of the system is that of splitting a monolithic application into
(micro)services. Such a monolith is often poorly understood and its inner pieces have unclear boundaries.

Splitting a monolith is typically a long term project involving strategic assessment, piecemeal changes guided
through daily assessment, and multiple fine grained spike assessments.

example

�37

assessment
in scrum

daily
assessment

spike
assessment

assessment
tasks

assessment-aided
planning

strategic
assessment

�38

The planning game is an agile technique that
brings together what the product owner wants,
with what the team can do.

When the affected system is already significantly
developed, the ability of the team to implement
new stories is highly dependent on what the
system allows the team to do. You simply cannot
ignore the system.

For a constructive planning, you need to make
the system part of the conversation. Appoint a
facilitator to quickly check things in the system
while hypothesis are being thrown across the
room.

assessment-aided
planning

�39

organization

�40

assessment in the
organization

Assessment requires
dedicated skills.

For this reason, assessment
must also be explicitly
captured through roles and
responsibilities in the
organization. facilitatorstakeholder

�41

assessment
stakeholder

The stakeholder is the driver of the
assessment process. He has to solve a
problem related to the system, and is
the one responsible for the end
decision.

�42

assessment
facilitator

Assessment is a too important
engineering skill to not have in-
house when developing software
systems. To ensure its presence
we have to have an explicit role:
the assessment facilitator.

The job of the facilitator is not to
dictate what is right and what is
wrong. The facilitator’s job is to
support the stakeholders in their
assessments. In the end, it is the
stakeholders that know what is and
is not important in their context.
The facilitator is responsible for
crafting the right analyses specific
to the stakeholder’s problem.

stakeholder

facilitator

�43

empowerment
not enforcement

Traditionally, assessment is positioned as quality
assurance - a process of enforcing rules by an authority
external to the actual development. This authority
resembles a police that is in charge with controlling and
making sure things conform to the standard. The
problem is that enforcement induces a negative
feedback loop, and this leads to lack of cooperation from
those that are supposed to benefit from the service.

+-

The goal of assessment is decision making. The
main actor is the one that has to make a decision.
It is the stakeholder that should be benefit from
assessment. Thus, assessment is best seen as a
service, rather than a controlling one. This
generates a positive feedback loop, and leads to
better decisions.

�44

stakeholder & facilitator
are roles

The stakeholder and the
facilitator are roles. They can
be played by the same
person.

�45

functional roles

assessment roles

assessment roles
complement functional roles

�46

adopting
assessment

specify

act

drive

identify

craft

facilitate

Stakeholders must learn to
specify concerns explicitly. The
second step is to learn how to
transform the analysis output
into actions. Finally, they have
to learn how to initiate and
drive the process.

Facilitators have to learn to work
with stakeholders to identify
valuable concerns. They have to
learn to craft tools fast. Finally,
they have to learn to facilitate
and ensure that stakeholders
make a decision.

�47

assessment
department

integrated
in project teams

dedicated department

Facilitators must work together with the
software project teams. However, in most
cases it is useful to form an explicit
assessment department that builds its own
culture and learns from past experiences.

The assessment department is essentially a
software team specialized in the domain of
analysis with the clients being the rest of the
software teams. It’s not unlike a data
science team, only for software.

�48

pattern

tooling

�49

our tools
shape us

Marshall McLuhan warned us since the
previous century that we shape our tools
and thereafter our tools shape us.

It follows that we should be choose
carefully the tools we expose ourselves to
because they determine the way we
understand problems. To do this, we first
have to understand the characteristics that
those tools should offer.

�50

Software has no shape. Better yet, it has
no one shape. It has many, and these
depend on the tools through which we look
at our software.

A typical system is built on top of multiple
distinct pieces of technology. The way we
deal with a problem somewhere in that pile
of code depends on the tools we have.

Tools are essential in software
development.

�51

tools
are essential

crafting tools economics

The essence of humane
assessment consists of using
dedicated tools for custom
problems. Using the right tool will
always outperform manual work.
The key is to have the right tool. craft tool use

manual checks

Crafting a dedicated tool does not have
to be expensive. The cost decreases
significantly with the appropriate skill,
and the technical infrastructure.

skill infrastructure

cost depends on

�52

time

analysis cost vs
usefulness

Often, building the perfect analysis
implies a significant effort and
resources. That is because data is
never clean. However, when you
perceive analysis as an assessment
tool, the goal transforms from getting
the exact automatic result to reducing
the scope for manual interpretation.
From this point of view, good enough
can become cheap.

cost

usefulness

good enough

�53

easy analysis with
conventions

Conventions and standards are at the
heart of quality assurance. Automatic
detections can be used to ensure them.

detection convention

ensures

eases

When a tool costs too much, it is often
because the system does not have a clear
structure. Instill conventions to get the
implementation of the analysis cheap.

�54

story

During the introduction of daily assessment in
a Scrum team, we noticed that the rules were
difficult to capture in automatic analyses. At a
closer look, the issues stemmed from the
difficulty of locating concepts and
components in the source code due to a lack
of conventions for naming packages and
classes.

For example, concerns like “component A
should only be used by component B” were
difficult to implement simply because there
was no easy way to locate A and B.

We created concerns for controlling the
naming conventions. Once the conventions
were in place, “component A should only be
used by component B” became trivial.

conventions to the rescue

�55

story

One developer raised the concern that his
component must be used only through the
intended public API. The main reason was to
ensure that she can extend and refactor the
internals of the component. As a
consequence, a checker was created to
detect all the violations, and through the daily
assessment process, the team went through
all the calls to the internal interfaces.

However, one of the calls could not leave with
the intended public API because of
performance issues. As such, the team
agreed that this was a reasonable exception
to the rule, and it was explicitly marked in the
concern.

the good exception

API

�56

analyses modelsdata

analysis
anatomy

To interpret an analysis, you need to
know what the input data is, and what
exactly the analysis algorithm is doing.

control to interpret

Conceptually, an analysis has an input set of
data, an algorithm, and an output model which
holds a representation of the original data. This
applies to any kind of analysis from a simple
metric to a complex visualization.

�57

introspection

navigation

selection

presentation

basic analysis actions

Given an entity, retrieve its
properties

Given an entity, retrieve other
entities that are related

Given a group of entities, retrieve
those that match a criterion

Given a group of entities, arrange
them according to a criterion

�58

example

Consider the Java class to the right.

How many methods are there? 7. But, is
a constructor a method? If the metric
computation does not consider it as a
method, we get only 6. What about
accessors? Are they to be considered as
methods? If no, we have only 4. Do we
count the private methods? If not, we get
3. Finally, equals() is expected by default,
so we might as well not consider it a real
method. Perhaps the result is 2.

How many methods are there? It
depends on what the metric captures.

Now, let us turn consider a report that
says a class has 70 methods. What does
it mean? You have to know what the
actual computation does.

what’s in a metric? example

public class Library {

 List books;

 public Library() {…}

 public void addBook(Book b) {…}

 public void removeBook(Book b) {…}

 private boolean hasBook(Book b) {…}

 protected List getBooks() {…}

 protected void setBooks(List books) {…}

 public boolean equals(…) {…}

}

constructor

accessors

default

private

�59

x := compute(y)

what is a parser example

parser

Assignment

Variable (x)

Call (compute)

Parameter (y)

Variable (y)

A parser is a magic machinery that transforms some input
format into an internal representation. Often the input is
formed by code written in a programming language, and the
output is an abstract syntax tree. Parsing is usually the first
step in building a model useful for high-level analysis.

�60

what is a
visualization example

A visualization is an analysis that
produces picture that reveals the inner
structure of the data.

Visualizations are often confused with
visual languages. While both rely on the
eye as a receptor, they differ in intent:
visual languages are meant as tools for
communicating ideas, while visualizations
are tools for discovering them from
unknown data.

�61

what is a
browser example

A browser is a user interface whose purpose is
to facilitate the manipulation of models. At its
core, the browser offers means to navigate
through models, and to present their different
facets.

For example, a file browser lets you browse
the file system. The code browser lets you
browse the code. These tools make you
productive because they match the workflow.
Any workflow should benefits from it.

�62

software
is data

Source code is not text. Logs are not text.
Configuration specifications are not text either. They
are all data. It’s just takes you to look at them as such.

�63

systems are
heterogenous

build
scripts

versions

configurations

code in multiple
languages & technologies

runtime
info

documentation

issue
reports

A thorough assessment must take into
account the multidimensionality of
modern systems. It’s almost never just
source code written in a single language.

persistency

�64

engine

analysis

dedicated
engine

tooling
buildup

Assessment requires analysis tools
tailored to the context of the problem
and of the system at hand. Generic
engines offer reusable high level
support to make tool building effective.

Yet, often there are less generic
pieces that are still repeatedly needed
in various analysis contexts.

When reuse is needed, dedicate a
buildup phase to construct this
dedicated engine that is reusable in
the given context.

There are several cases for
when such reusable
components are needed.

An example is a dedicated
importer for a proprietary
language or data format that
can be reused in several
language-specific analyses.

Another example consists in
building a model and a query
interface for a specific set of
problems.

�65

story

The client had a system written in multiple
languages including a proprietary scripting
language and several formats for other data. To
enable engineers to assess the state of the
system, we allocated an explicit project to build up
a dedicated infrastructure.

The process was made more difficult by the non-
existence of an explicit grammar for the scripting
language or for the other file formats. The first step
was to reverse engineer these grammars. This
was achieved by taking a large body of examples
and iteratively constructing parsers that consumed
all examples.

We used these parser to construct internal
abstract syntax trees. Out of these we created an
importer to produce a unified high level model.
This model was then used as a basis for several
assessment projects and tools.

tooling buildup for a
proprietary language

abstract
syntax trees

sources

model

importer

�66

throwaway
analysis tool

Crafting custom analysis tools should be cheap. Not fancy
analyses. Effective ones. Creating effective analyses should be
so cheap that it should still be profitable to use the crafted tool
only once and throw it away afterwards.

All we need is the right infrastructure. And, the right skill.

craft
tool use

throw
away

�67

educate
your requirements

Be selective when choosing your tools.

When faced with a new tool, do not stop at
what it can do out of the box. Get to
understand your context and formulate
your own requirements. Ask in what ways
you can tailor the tool. It is the engine
behind the tool that is the most important,
because your problems are specific and
they deserve a tailored analysis.

�68

models
are central

system

model

meta
model

represents

described by

Models are central to the analysis
workflow. A model is a simplification of
the system under analysis, and its goal
is to help answer questions about this
system.

To reason about a model we need to
know its structure. This is the
responsibility of the meta-model. The
effectiveness of a model stems from the
ability of the meta-model to offer the
information needed for the desired
analysis.

�69

analysis
must be iterative

models analyses

Assessment is seldom a static game.
An effective assessment is most often
carried out as a conversation with
data. Thus, an analysis tool must
support an iterative workflow that
enables you to refine your hypothesis
as you drill in the data.

�70

engines
enable tailoring

An analysis transforms an input data into
an output model. The value of an
analysis comes from the answers
provided by the resulting model.

An analysis engine is a piece of software
whose output is an analysis tool. The
goal of an engine is to enable the
creation of custom analyses.

Thus, an engine is to be judged from two
points of view: the kinds of analysis it
lets you build, and the costs associated
with creating a new analysis. Engines
are instrumental in making humane
assessment possible.

engine

analyses modelsdata

�71

importers modelsdata

importers
handle raw data

An example of an importer can be a
parser that takes source code and
produces a high level model.

Another example can be a
processor of log files that builds an
execution model.

An importer is an analysis
that takes raw data and
transforms it into a model
that is more suitable for
analysis.

�72

importer model

select relevant parts custom visualization

visualization engine

end result

sources

a simple analysis
decomposed example

Through this analysis, we
import the sources, we
select a subset of relevant
parts, and we show them
using a custom visualization.
The entire workflow is
supported by Moose.

query engine
�73

gtoolkit.com

Glamorous Toolkit offers several
generic engines that enable the analyst
to craft new tools fast and cheap.

engines

importers models analysesdata

Glamorous Toolkit is an environment is a platform for software and
data analysis that makes assessment practical.

Various kinds of data in
various formats can be
imported into models,
such as software systems
written in Java or C++.

Glamorous Toolkit
offers various tools
that deal with
metrics, clustering,
querying, visualizing,
and interactive
browsing. A key
concept is that the
results of any
analyses are fed
back into the model
and are available for
further analysis.

�74

http://gtoolkit.com
http://gtoolkit.com

beyond tools

�75

Tools are important, but assessment is ultimately a human activity.

�76

assessment > code metrics

assessment

analysis

code metrics

�77

metrics

inner
radar

To find solutions, you first need to formulate
the problem. To formulate the problem you
first need to be able to identify it. To identify
it, you need a radar. An inner radar. You
cannot buy such a radar, but you can build
and train your own.

�78

story

The client had a system in which one central
class seemed to incorporate most of the
system knowledge. The class had some
5000 lines of code.

We noticed that there seemed to be too
many somewhat similar if statements. We
ran a duplication analysis, and indeed, large
chunks of code were duplicated multiple
times, and they included long lists of if-
statements. In the end, the solution was to
introduce a state design pattern.

The client got excited at the prospect, but we
announced that the root of the problem is
the broken radar: someone opened the
class, entered line number 5000, committed
the code, and then slept well at night.

the root
of trouble

1
2
3
...

4998
4999
5000

�79

present
your assessment

As long as you do not work alone, decisions must be shared. To
convince others of your finding, you first have to let them know.
Presenting is key.

And the act of presenting does not have to match the path of
finding. In fact, it most often isn’t the most efficient approach.

And when you find a better way to present and get everyone to
resonate with your perspective, you learn more about your own
problem. Everyone wins.

�80

analysis

design

implementation

testing

assessment

10%

10%

30%

30%

20%

make it
explicit

Assessment is a pervasive
activity that must be captured
explicitly during a software
project.

For the state of practice to
change, we need to
acknowledge the existence of
assessment and plan for it
explicitly.

management spreadsheet

�81

Stakeholder (Manager/PO) Stakeholder (Developer)

FacilitatorStakeholder (Architect)

DecisionProblem

Data Model

Analysis engineAnalysis

(c) Tudor Gîrba, feenk.com

http://feenk.com
http://feenk.com

